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Abstract—We present a new scalable volumetric reconstruction
algorithm for multi-view stereo using a graphics processing unit
(GPU). It is an effectively parallelized GPU algorithm that
simultaneously uses a large number of GPU threads, each of
which performs voxel carving, in order to integrate depth maps
with images from multiple views. Each depth map, triangulated
from pair-wise semi-dense correspondences, represents a view-
dependent surface of the scene. This algorithm also provides
scalability for large-scale scene reconstruction in a high resolution
voxel grid by utilizing streaming and parallel computation. The
output is a photo-realistic 3D scene model in a volumetric or
point-based representation. We demonstrate the effectiveness and
the speed of our algorithm with a synthetic scene and real
urban/outdoor scenes. Our method can also be integrated with
existing multi-view stereo algorithms such as PMVS?2 to fill holes
or gaps in textureless regions.

I. INTRODUCTION

One of the main approaches for photo-realistic 3D scene
reconstruction is image-matching-based multi-view stereo, that
uses image correspondences with a geometric relationship,
known as epipolar geometry, between pair-wise images [14].
Image correspondence typically refers to dense correspon-
dence algorithms where most or all pixels in the reference
image are to be matched, in order to reconstruct a dense
geometry of the scene. With computed correspondences and
camera poses, final 3D points are obtained via triangulation.

Such a set of 3D points, called a “point cloud”, is the
final output of most scene reconstruction methods in this
category. The point cloud generally does not provide additional
information such as normals and connectivity of points. To
generate a complete 3D polygonal model, a further process,
so-called surface reconstruction, is needed. Since most sur-
face reconstruction algorithms such as [9] take unorganized
points, they are useful in many applications; however, since
they discard useful underlying information such as normals,
obtained from multi-view stereo, they are not appropriate when
the surface of an object contains outliers or regions of high
curvature. Noise in 3D points due to matching error may
also cause incorrect polygonal fitting in surface reconstruction
algorithms.

Another research trend in 3D scene reconstruction is
object-based volumetric stereo [7]. One of the most widely
used methods is space carving [11], [12] that uses photo-
consistency, where any photo-inconsistent voxel is carved
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away. This method assumes that camera poses are known so
that every voxel is projected into all images in which it is
visible. Since camera poses are typically unknown in most
outdoor scene images, the poses should be estimated prior
to the reconstruction, which is still a hard problem. Incorrect
camera poses can lead to poor reconstruction; therefore vol-
umetric stereo methods may not be appropriate for outdoor
scene reconstruction. In addition, they are often “object-
centric” where most views look at a centered foreground
object, whereas outdoor scene images are more complicated.

In this paper, we propose a novel GPU-parallelized volumet-
ric reconstruction algorithm for aerial photographs of outdoor
scenes. We use image-matching-based multi-view stereo to in-
tegrate depth maps with images into a high resolution volume.
This method is an effectively parallelized GPU algorithm that
simultaneously uses a large number of GPU threads, each
of which performs voxel carving, given input images from
multiple views and their depth maps. Each view’s depth map,
Delaunay-triangulated from pair-wise stereo correspondences,
explicitly represents a view-dependent 3D surface of the scene.
The output of this algorithm is a set of surface voxels, each of
which stores a weighted average plane among several view-
dependent planes that intersect the voxel cube. These surface
voxels are suitable for point-based rendering. For large-scale
reconstruction in a high resolution voxel grid, we also present a
scalable streaming reconstruction scheme along with the GPU-
adapted voxel carving. The experimental results show that our
method achieves high performance and works effectively for
large-scale reconstruction with synthetic and real urban scenes.

This paper is organized as follows: Section II provides an
overview of previous work, together with our contribution.
Section III describes our proposed GPU-based reconstruction
method. Section IV provides some experimental results and
discussion, followed by conclusions in section V.

II. RELATED WORK AND CONTRIBUTIONS

Our approach is among the multi-view integration tech-
niques that reconstruct a scene in a volumetric or polygonal
surface representation, given a set of depth maps from stereo
correspondences [4]. Such depth map integration methods
were originally proposed in reconstruction techniques for
range images obtained from a laser scanner. These techniques



can also be used for multi-view stereo applications since each
depth map can be treated as a range image.

Curless and Levoy’s algorithm [3] is a representative method
among the volumetric reconstruction techniques using laser-
scanned range images. This paper introduces a weighted
signed distance function of each point to the nearest range
surface from multiply scanned views to combine structured
data. Davis et al. [5] also use the same distance function to
fill holes caused by line-of-sight constraints.

Similar reconstruction techniques that directly merge a set
of range images into a single mesh have also been proposed.
Turk and Levoy [16] describe an incremental algorithm to
build surfaces by zippering multiple range meshes, by remov-
ing redundant surfaces, clipping the meshes, and zippering
along the remaining boundaries. However, difficulties in merg-
ing multiple range meshes may be encountered, since there are
numerous intersections among triangles [4].

Ju et al’s algorithm [10] uses a direct mesh integration for
multi-view stereo. Zach et al.’s multi-view mesh integration
method [17] uses a global energy function to achieve smooth-
ness when noise is present in the depth maps. Bradley et al.’s
algorithm [1] merges binocular depth maps using a Delaunay-
triangulation-based interpolating mesh approach.

There are several contributions in this paper. First, we
present a fast and robust volumetric integration method using
graphics hardware to reconstruct an outdoor scene into a vol-
umetric or point-based representation. We believe volumetric
integration is more appropriate to transform into parallel GPU
code than direct mesh integration. Our proposed method is
a GPU-based voxel carving that effectively utilizes massively
parallel GPU threads. In addition to adopting some concepts
from [3], we combine depth maps with the associated images
to generate a set of surface voxels, each with an optimally
interpolated color from all visible images and a weighted
average plane in a quantized format to efficiently use the GPU
memory. For better point-based splatting, the output surface
voxels are shifted to a point on the voxel’s weighted average
plane.

Second, we also focus on scalability of our algorithm to
achieve large-scale integration. Due to the limited GPU mem-
ory, it is not possible to reconstruct a high-resolution volume
in one GPU kernel. Our large-scale reconstruction scheme
achieves scalability by partitioning an entire volume into sub-
volumes, each of which is reconstructed by the parallel GPU
kernel.

In addition, we do not require dense correspondences for
depth maps. In dense correspondence algorithms, pixels in
textureless regions are difficult to correctly match, which
can cause matching errors. Pixels in an occluded region
also cause matching errors, and sometimes interpolation and
smoothing to correct the matching errors has a negative
influence on neighboring correspondences. We believe that
semi-dense correspondences are more appropriate than dense
correspondences in many scenes. Semi-dense correspondences
are sparser matching pairs that are sufficient to determine the
entire geometry of the scene. Each depth map, generated from

a set of semi-dense correspondences between two images,
represents “good” geometry for the scene from this view.

IIT. OUR RECONSTRUCTION ALGORITHM
A. Preprocessing

This algorithm requires a set of input images, each of which
comes with its camera pose and depth map. Therefore we first
perform camera pose estimation and image matching. In image
matching, any dense correspondence algorithm is applicable.
For our experiments, we use Cluff et al.’s dense correspon-
dence algorithm [2] using gradient-based warping and coarse-
to-fine hierarchical matching (i.e., a coarse matching at a lower
resolution level serves as a first approximation for the match-
ing at the next highest resolution level). Given some “good”
matching pairs from this algorithm, we extract matching points
on or near edges by applying an edge detector to the image.
Given camera poses and pair-wise correspondences, we then
use these correspondences to compute 3D points, followed by
bundle adjustment to refine the camera poses as well as the
3D points.

In some real urban and terrain scenes from aerial pho-
tographs, the 3D point cloud makes a large angle with the
image plane because of the tilt of the camera. Since these
scene models are fairly flat, we rotate these terrain models so
that the x and z coordinates are horizontal and the y coordinate
is vertical, for efficiency in volumetric representation. Then we
can use a much smaller range in the y-axis than in the x- and
z-axes, for instance, an 8192 x 512 x 8192 voxel grid. This
makes the reconstruction more efficient, with a smaller voxel
grid. Given the output stereo correspondences, we first align
these points onto the x-z plane by estimating a least squares
plane and transforming all coordinates as well as the camera
projection matrices.

B. Depth Map Generation

Given semi-dense correspondences between two images,
and the 3D points they determine, a depth mesh is generated
from a Delaunay triangulation of the 2D correspondences. The
2D vertices in the mesh are replaced with their corresponding
3D points so that the mesh becomes a view-dependent 3D
surface. Each triangle’s normal is computed from its 3D vertex
coordinates, with the sign chosen to make a negative dot prod-
uct with the viewing direction. If the input correspondences
are noisy, mesh simplification algorithms can be applied to
merge triangles that have similar normals. Once a depth mesh
is prepared, it is projected onto the image plane to create a
dense depth map. The reason to use depth maps instead of
depth meshes is for fast carving on a voxel-by-voxel basis.

The depth map stores not only depth values, but also
plane information with normals at every pixel. Depth values
represent a distance between the camera view point and the
view-dependent surface. Some view-dependent surfaces may
not be correct surfaces, but the incorrect surfaces should be
carved away when voxel carving is performed with another
view point. On the other hand, some other view-dependent
surfaces may represent correct surfaces, depending on the
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Fig. 1: Parallel voxel carving using GPU threads.

angle between the camera ray and the object’s true surface
normal. These surfaces will remain after voxel carving.

C. Farallel Voxel Carving on GPU

This reconstruction method is based on voxel-by-voxel carv-
ing, which can easily be transformed into parallel GPU code.
Thus voxel carving for a group of voxels is independently
executed in parallel as illustrated in Figure 1. Due to the
limitation of the GPU memory size, a single reconstruction
kernel can handle a volume of approximately 256% voxels. The
number of GPU threads executed depends on the resolution
of the input volume. In the case of 2562 voxels for instance,
2562 threads run in parallel and each thread carves 256 voxels
independently. For better balancing all thread workloads, voxel
carving by each thread is done in the y-axis direction since
most urban scenes are fairly flat on the x-z plane.

For each voxel in its y-axis column, the thread loops over the
input views and carves away any voxels closer to a particular
view than its depth map in its camera projection. Each voxel
has a tag that indicates the voxel visibility among three modes:
“uncarved”, “carved”, or “surface.” Initially, all voxels are
tagged as “uncarved”. In each camera view, for each voxel,
the distance between the voxel and the camera position is
compared with a depth value from the image plane which
the voxel is projected onto. If the distance is smaller than
the depth value, the voxel is carved. Any carved voxels in
a camera projection are no longer examined in later camera
projections. If it is larger than the depth, the voxel is preserved.
Any uncarved voxel which is close to a depth map within a
threshold is tagged as a surface voxel.

For surface voxels, the associated plane information in 4
quantities (normal vector and distance), and an averaged color
in 4 components (RGBA) are stored, where the alpha compo-
nent is used for the voxel mode. To obtain a color from all
visible camera views, neighboring colors in each image onto
which the voxel is projected are bilinearly interpolated. All the
interpolated colors from the multiple views are then averaged
using weights depending on the angle between the surface
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Fig. 2: Scalable volumetric reconstruction scheme.

normal and the viewing direction, as proposed by Debevec et
al. [6]. Similarly, when multiple planes are intersected within a
voxel cube, the normals and distances are weighted averages,
just like the signed distance and weight functions in [3].
This computation is independent of the carving order, so it
is suitable for parallelization.

The 4 plane quantities are quantized into signed 1-byte
values. Normal vector components (A, B, C) and the distance
D (i.e., a ratio of the signed distance between the plane and the
voxel center to the half-diagonal of the voxel cube) can range
from -127 to + 127. All quantized values with -128 indicate no
intersection with this voxel and the corresponding plane and
those voxels are removed later. As a result, each surface voxel
has encoded 8 bytes of plane and color information, which is
efficient for the GPU memory.

The output voxels can be rendered using volume rendering
or point-based rendering. With the surface voxels, one can
use point-based splatting such as QSplat [13] with discs and
normals. Each voxel corresponds to a single point which is
rendered as a splat (disc) with a small radius. For point-
based splatting, the output surface voxels are stored by shifting
each voxel’s center to a nearest point on the voxel’s weighted
average plane.

D. Scalable Reconstruction Scheme

One of our goals is to reconstruct large-scale urban scenes
in a high resolution voxel grid. As the resolution of the volume
increases, overall performance of the volumetric reconstruction
drops off rapidly. In addition, each GPU reconstruction kernel
can use a maximum 256° voxels, since this is all that fits
into the GPU memory of our graphics hardware. In this
subsection, we present a scalable reconstruction scheme that
exploit streaming computation as well as the GPU-accelerated
parallel computation. The GPU-based method in Section III. C
takes advantage of a number of GPU threads that carve voxels
simultaneously. The streaming computation makes it possible
to reconstruct large-scale volumes by sequentially processing
small regions of the entire volume with the parallelized
reconstruction on the GPU.

Figure 2 illustrates an overview of this scheme. Since
any subdivision does not affect the final output, this scheme
gives scalability; the entire region to be reconstructed can be



and coffee shack.

divided into small sub-volumes of a size that fits into the GPU
memory. Prior to this process, we determine the range of the
entire region by checking the minimum bounding box of the
triangulated 3D points. All the generated depth maps, images,
and camera projection matrices are stored on the GPU memory
before the carving begins, as shown in Figure 2.

In the streaming process, the entire volume is subdivided
into sub-volumes and each sub-volume stream has 2562 vox-
els. Each sub-volume stores a volume size, position, and
resolution, and all voxels in the stream are set to “uncarved”.
Output sub-volume streams after voxel carving on the GPU
contain only surface voxels with color and compressed plane
information. Input sub-volume streams in main memory are
sequentially transferred into the GPU memory to execute voxel
carving accelerated on the GPU. Output carved sub-volume
streams are then transferred back to main memory. The main
program on the CPU extracts surface voxels in the streams
and stores them with the associated voxel position.

IV. EXPERIMENTS AND DISCUSSION

In this section, we evaluate the effectiveness of our al-
gorithm with synthetic and real aerial/outdoor images. Our
application was written in C/C++ with CUDA and OpenGL.
All experiments were performed on an NVIDIA GeForce 9800
GT with 512 MB video memory, or an NVIDIA NVS 3100M
with 512 MB video memory. Figure 3 shows sample input
images used for our experiments. For the synthetic scene, we
generated an OpenGL textured polygonal model of a building
and terrain scene, and captured images from several camera
views. For each image, sparse depths (every 2-3 pixels) from
OpenGL color/depth buffers were measured to simulate sparse
correspondences in real applications. We also used two sets of
aerial photographs of real urban scenes; Brett Wayne’s aerial
images of Walnut Creek, California, USA [20] and Carlos
(Kique) Romero’s aerial images of Stockton, California, USA
[19]. The last scene is our outdoor image set of a coffee
shack. For the real scenes, we estimated camera poses using
Bundler [15], given intrinsic camera parameters. Pair-wise
correspondences to generate depth maps were obtained using
Cluff et al.’s dense matching algorithm [2].

A. GPU-based Reconstruction

Figure 4 shows results from our GPU-based single volume
reconstruction, both of which have 2563 voxels. Figure 4
(b) shows the reconstructed volume of the synthetic building

TABLE I: Accuracy of the reconstructed synthetic scene. Error
indicates a distance between the reconstructed and the ground-
truth surface.

# Depth Maps ~ Min. Error  Max. Error  Mean Error (%)
1 0.0134 35.6 1.5 (0.26%)
2 0.0119 31.4 1.0 (0.17%)
3 0.0122 3.9 0.9 (0.15%)

TABLE II: Performance between CPU and GPU version. Test
Set column indicates a test dataset name with its reconstructed
voxel grid, the number of images, and the number of depth
maps, respectively.

Test Set CPU Version  GPU Version  Speedup
Synthetic Scene (1283, 4, 4) 33s 0.08 s 40x
Synthetic Scene (2563, 4, 4) 19.7 s 0.60 s 33x%
Synthetic Scene (2563, 5,5) 219 s 0.60 s 36%
Stockton Scene (2565, 4, 2) 13.7 s 0.59 s 23x

scene, given three depth maps. Figure 4 (c) shows the recon-
structed volume of the Stockton dataset, given four images
with pair-wise correspondences. Since stereo correspondences
of this real scene represent a steep slope of the ground with
respect to the camera image, we firstly aligned these data onto
the x-z plane to efficiently use the volume resolution. Due to
the low resolution of the reconstructed volume for the Stockton
scene, the result does not provide details. Section IV. B
shows improved results by using our large-scale reconstruction
scheme, given the same images and correspondences.

Table I describes a quantitative evaluation to measure the
accuracy of the reconstructed surface voxels of the synthetic
scene, compared to the ground-truth information, using Mesh
Lab [18]. As more depth maps are fused, the accuracy in-
creases.

We also evaluated the performance gain of our GPU-
accelerated algorithm. For this analysis, we also implemented
a CPU version without parallelization. Performance differ-
ences between the CPU version and our GPU version are
summarized in Table II.

B. Large-scale Reconstruction

We also performed large-scale reconstruction experiments
to evaluate the scalability of our algorithm. We used the
same Stockton dataset, but applied our streaming and parallel
reconstruction scheme. We used 2,560 x 256 x 2,560 voxel



grid, consisting of 10 x 1 x 10 sub-volumes, each of which has
a 256° voxel grid that fits into the GPU memory. Thus each
parallel reconstruction GPU kernel takes a single 256 sub-
volume and 100 sub-volumes are incrementally reconstructed
in the streaming scheme. Then we extracted surface voxels
and rendered them using Mesh Lab, as shown in Figure 5 (a).
The number of surface voxels are approximately 5.5M.

Another large-scale reconstruction test was performed using
the Walnut Creek dataset. In this test, two volume resolutions
were tested: 20 x 1 x 10 and 40 x 1 x 20 sub-volumes, each
of which has 256 voxel grid. Thus the entire reconstructed
volumes have 5, 120 x 256 x 2, 560 and 10, 240 x 256 x 5, 120
voxels, respectively. The numbers of surface voxels are 4M
and 19M, respectively. Figure 5 (b) shows the results using
a point-based rendering system, QSplat [13], by converting
the reconstructed surface voxels (with normals and actual
distances to surface planes) into the QSplat format.

Figure 6 compares two reconstructed results of the Stockton
scene: a reconstructed result using Patch-based Multi-View
Stereo (PMVS2) [8] and a reconstructed surface voxels us-
ing our proposed method. Our result looks more dense and
detailed without holes or gaps since our approach effectively
integrates multiple depth maps to a single watertight model.
For this reason, our method can be used along with other
multi-view stereo applications whose result may contain holes
or gaps due to matching error in textureless regions (e.g.,
water in the Stockton scene). Figure 7 shows an example
that integrates our proposed method with PMVS2. Figure 7
(a) shows a reconstructed result only using PMVS2 where
there are incomplete surface patches due to mismatched
keypoints or patch extension failure. Figure 7 (b) shows a
result using both PMVS2 and our application where several
depth maps generated by PMVS2 are integrated into a single
set of surface voxels. The finally reconstructed volume has
1,280 x 1,024 x 1,024 voxels.

V. CONCLUSION

We presented a new GPU-based volumetric reconstruction
algorithm that effectively integrates multi-view images and
depth maps. This parallel algorithm uses a large number of
GPU threads, each of which independently performs voxel
carving and average plane estimation as well as optimal color
interpolation. The results showed remarkably improved perfor-
mance (20—40x speedup, compared to the CPU-version). Our
reconstruction also guarantees scalability using a streaming
and parallel scheme for large-scale scene reconstruction. It
partitions a high resolution volume into small sub-volumes
and performs parallel voxel carving on a GPU. This scheme is
straightforward and scalable, depending on volume resolution,
GPU memory and performance. The output can be rendered
from volumetric or point-based representation. In particular,
evenly distributed surface voxels with their normals work
effectively for point-based graphics.
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(d)

Fig. 4: Reconstructed volumes (2563 voxels). (a) Reconstruction results as more depth maps are fused. (b) Volume rendering
of the reconstructed synthetic scene. (c) Reconstructed surface voxels of the Stockton scene, rendered by Mesh Lab.

(@) (b)

Fig. 5: Large-scale urban scene reconstruction. (a) Reconstructed Stockton scene in 2, 560 x 256 x 2, 560 voxels, rendered by
Mesh Lab. (b) Reconstructed Walnut Creek scene in 5,120 x 256 x 2,560 voxels (left) and 10,240 x 256 x 5,120 voxels
(right), rendered by QSplat [13].

(@) (b)
Fig. 6: Comparison with PMVS2 for the Stockton scene. (a) A reconstructed scene using PMVS2 [8]. (b) A reconstructed
scene using our proposed method (2, 560 x 256 x 2,560 voxels).

(@ (b)

Fig. 7: Integration with PMVS2 for the coffee shack scene. (a) A reconstructed scene using PMVS2 only. (b) A reconstructed
scene using both PMVS2 and our proposed method (1,280 x 1,024 x 1,024 voxels).



